Hydrogen's Role in the Clean Energy Economy

Hydrogen Webinar, The Climate Center

Prof David Cebon, FREng University of Cambridge and Hydrogen Science Coalition

August 30, 2023

Hydrogen 2 science coalition

A voluntary group of *independent academics, scientists and engineers* who aim to bring *an evidence-based viewpoint* to the hydrogen debate

Members		Principles
Jochen Bard	Fraunhofer IEE, Germany	
Tom Baxter David Cebon	University of Strathclyde, UK Cambridge University, UK	The on
Bernard van Dijk	Univ Applied Sciences, Netherlands	
Paul Martin	Spitfire Research, Canada	Hydrogen shouldn't
Johanne Whitmore	HEC Montreal	and electrificat

www.h2sciencecoalition.com

ly zero emissions hydrogen is renewable hydrogen

Decarbonize existing hydrogen first

Decarbonise grey hydrogen first...

- 2.
 - Fertilizer
 - Petrochemical processing
 - Plate glass lacksquare
 - Maybe steel
 -

1. Grey hydrogen is 2% of world CO₂ emissions... same as aviation. Start where grey hydrogen is used today as a chemical feedstock:

Hydrogen should not be used to delay electrification

- 1. When electricity can be used instead of hydrogen, it is:
 - More efficient
 - Lower cost
 - Lower CO₂
 - A more mature solution: quicker to deploy
- 3. Blue hydrogen solutions are not clean.

2. Green hydrogen solutions need massive renewable energy generation.

Electrify everything we can: Vehicles...

- The killer is the conversion from heat to work in the fuel cell ۲
- Electrify everything you can! ۲

Land Areas for Electrification of UK Road Freight

Battery Electric Vehicles:

• 11.9 GW

No

- 4,000 wind turbines
- Land Area=6,000 km²

'Green' Hydrogen:

- 35.6 GW
 - (31 GW = UK average)
- 12,000 wind turbines
- Land Area=18,000 km²

Assumptions:

- 1. UK freight: 189b t.km per year
- 2. 0.19 kWh/t.km (44t), LF=0.75
- 3. Efficiencies:
 - 0.77 ERS
 - 0.23 H₂
- 4. Turbine power: 3MW
- 5. Wind power density: 2 W/m^2

The only low emission hydrogen is green hydrogen...

1. Blue hydrogen:

- Increases gas consumption by 45%
- releases 10%-50% CO₂ of grey hydrogen
- generates high fugitive methane emissions
- requires large-scale, non-existent CCS
- See HSC's definition* of clean H₂
- 2. Using grey hydrogen generates significantly higher CO₂

emissions than burning fossil fuels.

3. Green hydrogen is much cleaner, but requires a lot of

renewable electricity.

* https://h2sciencecoalition.com/briefings/clean-hydrogen-definition/

Why is this important?

- 1. Hydrogen for heating and road transport is inefficient and will increase costs and fuel poverty and damage economies
- 2. Blue hydrogen will increase gas imports, create high emissions and damage energy security;
- 3. Generating green hydrogen will require massive renewable electricity and will prevent decarbonisation of electricity grid;
- 4. Hydrogen must only be used where there are no other alternatives...
 - Fertilizer, plastics, glass, maybe steel
 - Not heating, Not heavy vehicles, Not electricity storage ...
- 5. Confusion and uncertainty around hydrogen will delay international decarbonization.
- torage ... elay international

